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The solution of a linear homogeneous differential equation (in particular the Schr6dinger equation) 
by expansion of the solutions (wave functions) in a discrete complete set of function is considered. The 
coefficients of the expansion are determinable by either the Ritz variational (integral) method, or by a 
generalisation of Frobenius's (non-integral) method. Each method leads to an infinite matrix eigen- 
value equation. It is shown that the integral and non-integral matrix equations are related by the 
overlap matrix of the set of basis functions. The effects of truncating the infinite matrices to finite order 
are described. A hybrid method of transformation to a matrix representation is proposed, which 
employs some techniques from each of the original methods. 

Die L6sung einer linearen homogenen Differentialgleichung (besonders der Schr6dinger- 
Gleichung) durch Entwicklung der L6sungen (Wellenfunktionen) nach einem diskreten vollst~indigen 
Satz yon Funktionen wird untersucht. Die Entwicklungskoeffizienten sind entweder durch die 
Variations-Methode (Integral-Methode) oder durch Verallgemeinerung der Methode von Frobenius 
(Methode ohne Integrale) bestimmbar. Beide Methoden fiihren zur einer unendlichen Matrix-Eigen- 
wert-Gleichung. Es wird gezeigt, dab die Matrizengleichungen der beiden Verfahren dutch die Uber- 
lappungsmatrix des Satzes von Basisfunktionen in Beziehung stehen. Es werden die Effekte be- 
schrieben, die sich ergeben, wenn die Matrizen von unendlicher auf endliche Ordnung reduziert 
werden. Eine Hybridmethode zur Transformation in eine Matrixdarstellung wird vorgeschlagen, die 
einige Rechenoperationen aus jeder der Originalmethoden anwendet. 

On consid6re la r6solution d'une 6quation diff6rentielle lin~aire homog6ne (en particulier 
l'~quation SchrSdinger) en dbveloppant les solutions (fonctions d'ondes) dans un groupe discret 
complet de fonctions. Les coefficients du d6veloppement peuvent ~tre d6termin6s par la m6thode de 
la variation de Ritz (int6gral) ou par une g6n&alisation de la m6thode de Frobenius (non-int6gral). 
Chaque m6thode m6ne Aune 6quation infinie matrice eigenvalue. On montre que les 6quations 
matrice, int6grales et non-int6grales, sont reli6es par la matrice ~ recouvrement du groupe des 
fonctions fondamentales. On d6crit les effects de tronquer les matrices infinies en ordrc limit& On 
pr6sente une m6thode hybride de transformation ~t une repr6sentation de matrice, qui utilise des tech- 
niques de chacune des m6thodes originales. 

1. Introduction 

T h e  e x p a n s i o n  o f  t he  e i g e n f u n c t i o n s  of  l inea r  o p e r a t o r s  as l inear  c o m b i n a t i o n s  

o f  a k n o w n  set o f  f u n c t i o n s  is a ve ry  bas ic  i d e a  a r i s ing  f r o m  the  l inea r  a l g e b r a  o f  
t he  e i g e n f u n c t i o n s  as vec to r s  in a H i l b e r t  space  [1 ] .The  coeff ic ients  of  the  e x p a n s i o n  

are  u sua l l y  d e t e r m i n e d  by  f o r m i n g  the  sca la r  p r o d u c t  w i th  each  o f  the  basis  
func t ions .  As  used  w i t h i n  the  S c h r S d i n g e r  r e p r e s e n t a t i o n  of  q u a n t u m  mechan i c s ,  
th is  t e c h n i q u e  is k n o w n  as t he  R i t z  v a r i a t i o n a l  m e t h o d  [2].  In  the  Ri tz  m e t h o d  
the  f o r m a t i o n  of  t he  sca la r  p r o d u c t  i n v o l v e s  an  i n t e g r a t i o n  o v e r  t he  w h o l e  o f  the  
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configuration space, so that the original differential operator representation is 
transformed into a matrix representation. This integral procedure is the basic 
technique used for almost all current numerical calculations on atomic and 
molecular systems. 

By contrast many well known linear operator problems of wave mechanics [3] 
(hydrogen atom, harmonic oscillator, rigid rotator, etc.), as well as problems of 
classical physics [4], and mathematical analysis [5], are solved analytically or 
semi-analytically by the method of Frobenius [6]. This method also involves a 
linear combination of a set of basis functions (specifically a power series), but 
the coefficients are determined by using the linear independency of the basis 
functions, rather than by formation of scalar products, so that no integrals are 
involved as in the Ritz variational method. Frobenius's method is essentially a 
transformation to a matrix representation, although the matrix notation is not 
used explicitly in classical applications of the method [3, 7, 8]. 

For a given basis set, the two matrix equations resulting from the Ritz 
method, and from Frobenius's method, are equivalent through a transformation 
involving the overlap matrix of the set of basis functions, as shown in 5. This 
transformation provides an insight into the reasons why particular problems 
are susceptible to solution by either Ritz's method, or Frobenius's method, but 
not by both. The suitability of one method or the other for a particular problem 
is discussed further in the light of the effects of using an incomplete basis 
(represented by a truncated complete set), in which case the two methods are no 
longer equivalent. Features of both methods are combined in a proposed hybrid 
method of arriving at a matrix representation. 

2. Expansion of the Eigenfunctions 

The linear homogeneous differential equation: 

~ i  = ~'i~Pi (1) 

may be solved by a series expansion: 

W,= ~ c}~,. (2) 
j= l  

is a linear differential operator with respect to variables r, tp i is one of its eigen- 
functions, and 2 i is the corresponding eigenvalue, the index i specifying a parti- 
cular eigensolution. The ~j are known functions of r, and the coefficients c} are 
to be determined. 

For the expansion (2) to be an exact solution of the differential Eq. (1), the 
set { ~ j ; j =  1 to oo} must be a complete set of functions in the space spanned by 
the variables r. The functions ~j are required to be linearly independent, so that 
none of the coefficients c} are redundant. Two methods of determining the 
coefficients c} are widely used: in this discussion, they will be referred to as the 
integral and the non-integral methods. The integral method is usually called the 
Ritz variational method [2] in the case that ~ is a Hermitian operator, as will 
henceforth be assumed herein. The non-integral method is known as the power 
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series method, or as the method of Frobenius [6], in the particular case where 
is an ordinary differential operator, and the 4~j are powers of the independent 

variable. Both methods have as their first step, the substitution of the expansion (2) 
into the differential Eq. (1), to produce: 

~, c}(N - 2i) ~j = 0. (3) 
j = l  

3. The Integral Method 

The integral method proceeds by multiplication of (3) from the left by each 
member of the set { ~ ;  k =  1 to ~ }  (~0" denotes the complex conjugate of ~k), 
followed by integration over r. The resulting set of equations may be written 
compactly as the matrix eigenvalue equation [9, 10]: 

Hci  =- /~iSc i . (4) 

H and S are infinite square matrices with elements: 

Hkj = S ~ ~ ~ d r ,  Ski = S 4 "  ~ j  d r (5) 

for k and j = 1 to ~ �9 c i is the infinite column vector of the coefficients c~. 

4. The Non-Integral Method 

The second step of the non-integral method is the elimination of all functions 
of r (other than members of the set {~k; k =  1 to ~})  from (3). That is ~ j  is 
written as a linear sum of the ~k: 

j + m  

% = Akj k. (6) 
k = j - I  

The coefficients Aki are determined by algebraic properties of the functions #k, 
such as recurrence relations [11]. The operators ~ occuring in quantum 
mechanics are often simple rational functions of the variables r, so that the 
expansion (6) of ~ # ~  may contain only a small number of terms: that is the 
integers l and m in (6) are usually finite and small. 

Substitution of (6) into (3) produces: 

i [ j~m (Akj__ 2ibkj) q~k] = O . (7) ~ C j  
j=l Lk=j-I 

Since the c}, Ak~, and 2i, are independent of the variables r, and since the ~k are 
a linearly independent set of functions, (7) can only be satisfied for general values 
of the variables r, if the coefficient of each 4~ in (7) is identically zero. Inter- 
changing the order of the summations in (7), this condition produces the matrix 
equation: 

A c i = ~.ile i . (8) 
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The elements of the infinite square matrix A are the coefficients Aki of (6) and (7) 
in the range j - l <  k < j  + m, and are otherwise zero. 1 is the infinite identity 
matrix: Ikj = ~Skj. The infinite column vector d contains the coefficients c~ as in (4). 

5. Relationship between the two Methods 

What has been said above is well known: it has been reproduced for the sake 
of clarity, and to establish notation. The relationship between the integral and 
non-integral methods may be established through their corresponding matrix 
Eqs. (4) and (8) respectively. Both of these equations determine the complete 
spectrum of eigenvalues of the original differential operator ~ .  Since the set 
{~; j - - -  1 to oo} has been assumed to be complete, the eigenvalues 2i of the in- 
finite matrix Eqs. (4) and (8) are exact, and are therefore necessarily identical. 
The identification of the eigenvectors in Eqs. (4) and (8) is justified since the 
arbitrariness associated with phase, normalisation, and possible degeneracies, 
can be removed by auxiliary conditions (at our disposal) on the original eigen- 
functions ~Pi, so that the coefficients c~ are then uniquely determined in the 
expansion (2). 

Thus the infinite matrix Eqs. (4) and (8) determine the same eigenvalues ;Li 
and eigenvectors c ~, and yet they differ somewhat in form, and contain different 
matrices. Eq. (4) can be transformed into standard eigenvalue form by multi- 
plication from the left by S - t ,  which is possible since S is necessarily non-singular 
if the ~k are linearly independent as has been assumed. The result is: 

S - t H e  i = ,~i lc  i " (9) 

Eqs. (8) and (9) have the same form, and since they determine the same eigen- 
values 2~ and eigenvectors c ~, it follows that they must be identical in every 
respect. This realisation leads to the identification: 

A = - S - ~ H  or H - S A .  (10) 

This equation is the fundamental relationship between the integral operator 
matrix H, the overlap matrix S, and the non-integral operator matrix A, 
obtained by expanding the eigenfunctions tpi of the operator N in the same 
basis set {CPk;k = 1 to oo}. It has been derived independently in a more abstract 
context by L6wdin [12]. 

6. Comparison of the Methods in General 

The relationship (10) provides an insight into the merits of each method. 
Firstly it is noted that the operator matrices H and A, and also the corresponding 
eigenvalue Eqs. (4) and (8), are identical if the basis set {~bk} is orthonormal 
(Ski = 3ki; S = I): otherwise they are necessarily different. Clearly for an ortho- 
normal basis set {~k} the two methods are entirely equivalent. In this case the 
algebraic manipulations involved in deriving the elements of A are entirely 
equivalent to the task of evaluating the integrals HRj  (5) analytically. Henceforth 
only the case of a non-orthonormal basis is considered. 
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The Hermit/an (or self-adjoint) character of @ is essentially an integral 
property [9] defined by the relation: 

H*j= H k. (11) 
In this case H is a Hermit/an matrix by definition, and since S is always 
Hermit/an (as is apparent from (5)), it follows from (4) that all the eigenvalues 2i 
are necessarily real. However even though the operator ~ is Hermit/an, it follows 
from (10) that the non-integral operator matrix A is not Hermit/an for a non- 
orthonormal basis. Thus A is generally non-Hermit/an so that it is not apparent 
from (8) that the eigenvalues 21 are real. 

It is this non-Hermit/an character (or non-symmetric character in the real 
case) of the A matrix, which is associated with the sparse structure (that is many 
identically zero elements) of A as implied by (6). A is described in terms of the 
integers l and m in (6), as a band matrix with l +  m bands parallel to the 
principal diagonal. The band structure of A is generally not symmetrical: that 
is the integers l and m in (6) are generally not equal. If A is a triangular matrix 
(l or m = 0 in (6)) an analytical solution for the eigenvalues 21 and eigenvectors c / 
is obtained. In particular if A is an upper triangular matrix (m = 0) the expansion 
(2) of the eigenfunction ~p~ contains a finite number of non-zero coefficients c}. 

Most of the exactly soluble problems of classical and quantum mechanics 
[13, 14], and of mathematical analysis [5], correspond to upper triangular A 
matrices with a single band of non-zero elements (l = 1 in (6)) above the principal 
diagonal. These very sparse A matrices arise in one-dimensional problems by 
expansion of the eigenfunctions ~Pi in a power series of the independent variable. 
Generally all the elements of the overlap matrix S of a power series are non-zero, 
so that from (10) all the elements of H are also non-zero even though A is a band 
matrix of width two. Thus the integral (Ritz) method would not be suitable for 
the solution of these exactly soluble problems, since the simplicity of the eigen- 
vectors would not be apparent in the resulting matrix Eq. (4). 

The respective merits of Hermit/city for the integral method, and of the 
sparseness for the non-integral method, apply only with regard to the deter- 
m/nation of the eigensolutions of the resulting matrix Eqs. (4) and (8): that is the 
actual convergence of the expansion (2) is the same for both methods, since it is 
determined by the choice of the basis functions ~k. However the non-integral 
method may be a guide to the choice of basis, since a basis producing an approxi- 
mately upper triangular A matrix (in the sense that the non-zero elements below 
the diagonal are few and/or small in magnitude), is one approximating to an 
analytical solution with a finite number of coefficients c}. The integral method 
cannot yield such an insight into the convergence of c ~, since it only gives an 
analytical solution in the trivial case where the basis is the set of eigenfunctions 
of~{wi}. 

7. Truncation 

The most common method of obtaining an approximate eigensolution in 
numerical calculations is to truncate the expansion (2) at a finite number of terms, 
the presumption being that the discarded terms make a contribution to ~p/, 
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which is negligible compared with the desired accuracy of the approximate solu- 
tion. Although the infinite matrix Eqs. (4) and (8) are equivalent, this is no longer 
true when they are truncated at the same finite number of terms n. This non- 
equivalence is demonstrated by comparing the equations expressing the matrix 
multiplications in (10) for the non-truncated expansion: 

H k j =  ~ SkiAij , Akj= Skil Hij (12) 
i=j-1 i=1 

and for the truncated expansion: 

j+m 
Hkj = E SkiAi , : s S;? . (13) 

i=j - i  i=1 
but inn 

Thus in general the matrix Eqs. (4) and (8) are transformable into each other only 
by infinite matrix multiplications. The two truncated matrix Eqs. (4) and (8) are 
only equivalent if the overlap matrix S is diagonal, corresponding to the basis 
set {~bk} being orthogonal. 

In the case where ~ is a Hermitian operator, the approximate eigenvalues 2! n) 
obtained by truncation of (4) to order n are real, and are variational (upper bounds 
to the exact eigenvalues 21 ~) with respect to the set of coefficients {c} ;j = 1 to n} 
retained) [15]: There is no variational principle for the eigenvalues of Eq. (8) for 
a finite order of truncation n, since the non-integral operator matrix A is in 
general non-Hermitian. Because of this non-Hermiticity, the truncated A matrix 
(formed by the non-integral method, and then truncated in (8)) may have some 
complex eigenvalues, even though the exact eigenvalues ,~I ~176 of N (and of the 
infinite A matrix) are necessarily real. Comparing (12) and (13), it is apparent 
that if the truncated non-integral operator matrix A (n) was formed from the 
second of Eqs. (13) from S (") and H (~), rather than from (12) (which is equivalent 
to the derivation of A (") by the non-integral method), that its eigenvalues would 
be identical with those of (4) truncated to the same order, so that they would be 
real and variational even though A ~") generated in this way would still not be 
Hermitian. Thus it is apparent, that it is the terms excluded in (13), but retained 
in (12) (i = n + 1 to oe), which make A (~) essentially non-Hermitian in the sense 
of possibly having some complex eigenvalues. 

8. Comparison of the Methods in Computations 

The Hermitian form of the eigenvalue Eq. (4) in the integral method is an 
advantage in numerical determinations of the eigenvalues, since the available 
eigenvalue algorithms [20] are more efficient for Hermitian matrices than for 
general matrices. Two demerits of the integral method are that a considerable 
amount of work may be involved in the evaluation of the matrix elements (5) 
(especially the Hkj), and that the resulting matrix Eq. (4) is not in stand- 
ard eigenvalue form. Although computational methods for simultaneously 
diagonalising the H and S matrices of (4) are being developed [21, 22], the usual 
numerical methods (Jacobi, Givens, Householder) [-20] operate on a matrix 



222 G. Hunter: 

eigenvalue equation in standard form. Usually (4) is transformed into standard 
form by the Choleski decomposition [20], before computing the eigenvalues. 

Three advantages of the non-integral method are that: no integrals have to 
be evaluated in setting up the matrix A ; the matrix Eq. (8) is already in standard 
eigenvalue form; and the usual sparse (band) structure of the A matrix facilitates 
the determination of the eigenvalues, since every zero element corresponds to a 
partial reduction to diagonal form. The principal disadvantage of the non- 
integral method is that the resulting matrix A is not Hermitian, so that the eigen- 
values are in general complex, which complicates the numerical algorithms. 

9. A Hybrid Method 

It is possible through the relationship (10), to combine some of the advantages 
of the two methods into a hybrid method, which overall may be simpler in some 
cases than either of the original methods. This hybrid methodwill result in a 
matrix equation, which is both Hermitian (for a Hermitian operator ~), and which 
is in standard eigenvalue form. In addition the evaluation of integrals will be 
avoided as far as possible. 

An essential part of the hybrid method is the transformation of (4) to standard 
eigenvalue form by the Choleski decomposition [201 of S, which is alternatively 
known as the square root method [231. This is a non-iterative numerical proce- 
dure, which is represented by the equations: 

G = T H T t ,  (14) 
d i~-- U ~ c  i , (15) 

where T =  U -1, and t denotes the Hermitian conjugate: that is complex con- 
jugation plus transposition. The transformation matrix U is defined to be an 
upper triangular matrix satisfying: 

S =  U U * .  (16) 

The transformation changes (4) into: 

G d  i =- ]cid i . (17) 

It can be shown that if H is Hermitian, then so is G, so that the transformation 
produces a Hermitian eigenvalue Eq. (17) in standard form. The transformation 
is only unique [201 if U is restricted to be an upper triangular matrix 
satisfying (16). 

In the usual numerical procedure [20, 23], the matrix U of (15) and (16) is 
defined to be a lower triangular, rather than an upper triangular, matrix, which 
is equivalent to reversing the order of the functions #j in the set { # j ; j =  1 to n}. 
The transformation represented by Eqs. (14) to (17) is equivalent to the Schmidt 
orthonormalisation [24] of the basis set {~j} taken in the original order, the 
elements d} of d i being the coefficients of ~pi in the new orthonormal basis. 
However a practical consideration is that it may be more expeditious to do the 
orthonormalisation implicitly by the numerical square root method, than to 
orthonormalise the original basis algebraically by the Schmidt process. 
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(iii) 
(iv) 
(v) 

of(17). 

In the hybrid method the operator matrix G is derived from the non-integral 
operator matrix A, rather than from H via (14). This is possible, since substitution 
of (10) into (14) using (16) produces: 

G = U * A  T t . (18) 

Thus the hybrid method involves the following steps: 

(i) evaluation of A algebraically from @ and the chosen basis {~j} by the 
non-integral method (section 4); 

(ii) evaluation of S by computation of the overlap integrals Ski of (5); 
numerical computation of U* and T* by the square root method; 

transformation of A into G by (18); and 
determination of the eigenvalues 2 i and eigenvectors d i of G by solution 

An advantage of the hybrid method is that only the overlap integrals Ski 
have to be evaluated: no operator integrals Hk~ are involved. Another advantage 
is that only two of the four transformation matrices U, U*, T, T*, are involved 
in (15) and (18) compared with three of them in (14) and (15). This reduces some- 
what the computing involved in the transformation [22]. A disadvantage is that 
the matrix multiplications implicit in (18) must be performed before truncation: 
that is the matrix multiplications must be continued beyond the truncation 
order n, until the matrix elements of G have converged to the required precision. 

A special case worth noting is where the basis {4~k; k = 1 to oe} is orthogonat, 
but not normalised. Such a basis may be particularly suitable for the hybrid 
method, since the problem of convergence in the matrix multiplications implicit 
in (18) disappears (in fact the transformation from A to G is very simple, since 
the U matrices are all diagonal), and since an unnormalised orthogonal set of 
functions can usually be chosen to have simpler algebraic properties (utilised in 
setting up A), than the corresponding set of normalised functions (for example: 
the Legendre polynomials [1 ll). 

10. Applications in Quantum Mechanics 

A well known application of the non-integral method in quantum mechanics 
is Pekeris's solution of the SchrSdinger equation for the helium atom [25]. This 
application involved the special case of an orthonormal basis set, in which the 
truncated non-integral and Ritz variational methods are entirely equivalent, as 
Pekeris realised. Nevertheless he chose to derive the matrix Eq. (4), or (8), by the 
non-integral method, rather than by the Ritz method. 

The non-integral method has been used implicitly (as the analytical power 
series method) in the solution of the exactly soluble problems of quantum 
mechanics [14]. It has also been used implicitly to obtain semi-analytical 
solutions of the two-centre Kepler problem, the eigenvalues being obtained 
numerically through the theory of continued fractions [17, 18]. Recently the 
non-integral method has been formulated explicitly in matrix notation for this 
problem [19], and for the anharmonic oscillator problem [16], in which cases 
the truncated matrices have same spurious complex eigenvalues. 
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The ideas discussed in this paper, and in particular the hybrid method, are 
being applied by the author to the two-centre Kepler problem of wave mechanics 
in order to produce better (in the sense of more rapid convergence, and the non- 
occurrence of spurious complex eigenvalues) semianalytical solutions than those 
currently available [-17-19]. 
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